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Abstract

EPA PMF version 5.0 and the underlying multilinear engine executable ME-2 contain
three methods for estimating uncertainty in factor analytic models: classical bootstrap
(BS), displacement of factor elements (DISP), and bootstrap enhanced by displace-
ment of factor elements (BS-DISP). The goal of these methods is to capture the uncer-5

tainty of PMF analyses due to random errors and rotational ambiguity. It is shown that
the three methods complement each other: depending on characteristics of the data
set, one method may provide better results than the other two. Results are presented
using synthetic data sets, including interpretation of diagnostics, and recommendations
are given for parameters to report when documenting uncertainty estimates from EPA10

PMF or ME-2 applications.

1 Introduction

1.1 EPA PMF and ME-2

The multivariate factor analysis tools PMF2, ME-2, and EPA PMF (which is built on
ME-2) are widely used for numerous applications, particularly for analyses of ambient15

air quality data (Poirot et al., 2001; Reff et al., 2007; Kim and Hopke, 2007; Engel-
Cox and Weber, 2007; Norris et al., 2008; Ke et al., 2008; Ulbrich et al., 2009; Brown
et al., 2012). Each tool performs a positive matrix factorization (PMF) that decomposes
a matrix of speciated sample data into two matrices–factor contributions and factor
profiles. A speciated data set may be viewed as a data matrix X of dimensions n by m20

in which n samples and m chemical species were measured. Rows and columns of X
and of related matrices are indexed by i and j , respectively. The goal of modeling with
PMF is to identify the number of factors p, the species profile fk of each factor k , and
the amount of mass gk contributed by each factor k to each individual sample (Eq. 1):
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xij =
p∑

k=1

gik fkj +eij = cij +eij (1)

where eij is the residual and cij denotes the modeled part for each sample/species. The
method is described in greater detail elsewhere (Paatero and Tapper, 1994; Paatero,
1997). Regarding notation, capital bold-face letters denote entire matrices, gk denotes
columns of the factor contribution matrix G, and fk denotes rows of factor profile matrix5

F.
Original versions of PMF2, ME-2, and EPA PMF provided uncertainty estimates for

F and sometimes G. However, these estimates did not explicitly include rotational
uncertainty of the results. The present work corrects this deficiency for ME-2 and
EPA PMF, presents three methods for estimating uncertainty, and discusses each10

method’s strengths and weaknesses. The error estimation methods described in this
work have been implemented in version 5.0 of EPA PMF, to be released in 2013. See
http://www.epa.gov/heasd/research/pmf.html and Norris et al. (2008) for details.

1.2 Two interpretations of Eq. (1)

Equation (1) may be employed in two ways. One is when F and G contain known15

values. This approach is used when generating simulated data that mimics real mea-
surements. In this case, the data errors eij are pseudorandom values, often generated
from normal distributions with mean zero and standard deviation equal to sij . These
data uncertainties sij are known values specified in a simulation. Multiplying F and G
and adding E produces X, the simulated matrix of measurements to be modeled by20

PMF. Fitted values for F and G can then be compared to the true values that were used
to simulate X.

Alternatively, Eq. (1) may be employed when the measured (or simulated) matrix X
is known and the matrix of estimated data uncertainties uij has been estimated. This
approach is used to determine the values of unknown matrices F and G. In simulations,25
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data uncertainties uij may be set equal to uncertainties sij . When analyzing real data,
data uncertainties uij are estimated by the users so that uij approximate the unknown
true uncertainties sij . In some situations, adjusted data uncertainties are used. For
example to downweight species j , one may set uij ≈ 3sij for a chosen species j .

1.3 Details of the PMF model5

In PMF, factor elements are constrained so that no sample can have a significantly neg-
ative factor contribution. Also, PMF allows each data value to be individually weighted.
This feature allows analysts to adjust the influence of each data point, depending on
the confidence in the measurement. For example, data below detection limit can be
retained for use in the model with the associated uncertainty adjusted to give these10

data points less influence on the solution than data above the detection limit. The PMF
solution minimizes the object function Q (Eq. 2) based upon the estimated data uncer-
tainties (or adjusted data uncertainties) uij and with factor matrix elements gik and fkj
subject to non-negativity constraints.

Q =
n∑

i=1

m∑
j=1


xij −

p∑
k=1

gik fkj

uij


2

(2)15

ME-2 performs iterations via the conjugate gradient algorithm until convergence to
a minimum Q value.

1.4 Origins of uncertainty in PMF analyses

F1 and G1 are used to denote a solution of Eq. (1) obtained by solving Eq. (2). Uncer-
tainty analysis of PMF modeling attempts to estimate a range or interval of plausible20

values around each element of matrix F1. This interval is estimated so that with a high
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probability it will include the true value of F. The ends of the range will be called up-
per and lower interval estimates of F or simply upper and lower estimates of F. The
uncertainty analysis must take into account all aspects of solving Eq. (2) such as non-
negativity constraints.

Uncertainty in PMF analyses arises from three main causes, as described below:5

(1) random errors in data values; (2) rotational ambiguity; and (3) modeling errors.
Random errors in data values are those that arise from the measurement process.

All measured data contain random errors – measure something twice and two different
values will be obtained. Uncertainty caused by random errors in data values is the
“classical” type of error.10

Uncertainty caused by rotational ambiguity is specific to factor analytic models. Ro-
tational ambiguity arises because bilinear factor analytic models are ill-posed, meaning
there are multiple solutions (G, F) with the same value of Q (Henry, 1987). The amount
of rotational uncertainty is limited by non-negativity constraints imposed on the solu-
tion and by the presence of zero values in the fitted G and F (Paatero et al., 2002).15

Depending on numerical values of true factors, this uncertainty may dominate other
types of uncertainty or be relatively insignificant. In particular, the amount of rotational
uncertainty depends on the number of zero values in true G and F factors. Note that the
terms “rotational ambiguity” and “rotational uncertainty” are used to represent slightly
different ideas. “Rotational ambiguity” denotes the concept that multiple mathemati-20

cal solutions can yield the same or practically the same fit (one with almost identical
Q values). “Rotational uncertainty” is used when discussing the amount of rotational
ambiguity in a quantitative sense.

Modeling errors are those caused by using a model that is a simplification of the true
physical-chemical phenomena. The PMF model describes what is believed to happen25

in nature. However, modeling errors can arise if the real process in nature is different
from what is captured in Eq. (1). Some examples include variation of source profiles
with time (e.g. because of chemical transformations during transit or chemical vari-
ations in the source itself), incorrectly specified number of factors p, incorrectly es-
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timated data uncertainties uij , contamination of samples, correlated (i.e. non-random
or systematic) errors in data values, and weak or sporadic sources that cannot be
represented by dedicated factors. Adjustments to measured data may also introduce
modeling error. For example, if data below detection level are censored, then the re-
sulting matrix X will not be in relationship to matrices G and F as stipulated by Eq. (1).5

Effects of modeling errors are difficult to estimate because the causes of such errors
generally cannot be explicitly formulated.

It is noted that other definitions of modeling error have been used in literature. For
example, Tauler (2001) includes rotational ambiguity with modeling error.

The relative importance of the three causes of uncertainty depends on the size of10

the data set being modeled. As the size of the data set increases, the significance of
random errors decreases, due to the law of large numbers; the significance of rotational
uncertainty also decreases because the number of zero entries in true G factors often
increases. On the other hand, effects of non-random modeling errors are not likely to
decrease with increasing size because the law of large numbers does not apply to15

non-random disturbances. Thus, the relative significance of modeling errors may be
assumed to be highest in the largest data sets. Large data sets may, however, contain
enough information so that their models may be enhanced to include the real data’s
problematic features, which cannot be modeled with a small data set.

1.5 Significance of different Q values20

The difference of Q values obtained from alternative PMF models is often used as a cri-
terion for rejecting models with “too high” Q values. Examples include comparison of
models with different numbers of factors and rejection of competing solutions obtained
from repeated random starts of PMF modeling. In error estimation, Q values are used
for similar purposes: acceptable solutions must not have “too high” Q values. The ob-25

vious question is: how high is “too high”? Unfortunately, this question does not have
a clear answer. If there were absolutely no modeling errors, then a change in Q (dQ)
by 20 units might be considered “too high,” and this limit would be independent of the
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number of data values in the data set. In real life, modeling errors complicate the situ-
ation because modeling errors differ in different types of measurements. Even in one
type of measurement, modeling errors may depend on details of individual experimen-
tal situations. It may be assumed that the effect of modeling errors is dependent on the
number of data values. It appears likely that the variation in Q values caused by mod-5

eling errors is proportional to the number of data values and hence also proportional
to Q values.

It follows that no a priori percentage value may be given for assessing variations of
Q values. In some data, a significant variation of Q might be 1 %. In other data, it might
be 5 or 0.5 %. It seems that an understanding of the significance of Q variations must10

be based on empirical evidence. It is crucial that such evidence be relevant to the case
at hand. Thus, for instance, observations of Q variations in speciated aerosol measure-
ments may not be applicable to analysis of aerosol mass spectra, water quality data, or
other datasets. For example, observed variations in Q from DISP for reasonable mod-
els of the simulated data presented later in this paper appear not to be significant for15

percentages less than 0.1 %. This percentage may or may not be appropriate when an-
alyzing actual ambient measurements, such as speciated aerosol data, aerosol mass
spectra, water quality data, human exposure data, or other types. Experience applying
these error methods to various types of data and numerous data sets is required before
it will be known if a fixed percentage is realistic for multiple or all types of data.20

1.6 Overview of uncertainty estimation methods

Many uncertainty estimation methods base their estimates on analyses of a number
of perturbed versions of the original data set. Each perturbed data set is analyzed in
a similar way as the original data. The collection of all perturbed results is then used to
derive uncertainty estimates for the original unperturbed results. Using a collection of25

results allows analysts to review a distribution for each factor element to evaluate the
stability of solutions instead of having to rely on a single point estimate.
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One of the classical methods for estimating uncertainty is error propagation which
originates in astronomy. For this method, data uncertainties (i.e. standard deviations of
observations) are assumed known. Then the covariance matrix of computed results is
obtained by applying the well-known error propagation formula that is based on a linear
approximation around the measured values. No perturbed versions are generated in5

classical error propagation. Noise insertion is a computation-intensive variation of the
classical method. In this method, a number of perturbed versions of the original data
set are generated. Each data value is perturbed by a pseudorandom artificial addi-
tive noise value whose standard deviation equals the estimated uncertainty of the data
value to be perturbed. The variances and covariances of the distribution of perturbed10

results are then used as the uncertainty estimates of original unperturbed results. In
comparison to original error propagation, noise insertion has the advantage that no lin-
earization is needed and non-negativity constraints and other imposed constraints are
correctly handled. Error propagation and noise insertion account for uncertainty caused
by random errors in the data but not for uncertainty caused by rotational ambiguity or15

modeling errors.
Bootstrap analysis (BS) perturbs the original data set by resampling. In each per-

turbed or resampled version, some randomly chosen rows of the original matrix occur
multiple times, while other rows do not occur at all. Each resampled data set is decom-
posed into profile and contribution matrices using PMF (Norris et al., 2008). BS has20

an advantage of not depending on the average level of error estimates of data values:
if all data error estimates are scaled by an arbitrary coefficient r , BS results will stay
the same, provided that outlier reweighting does not induce a change. Uncertainties
estimated by BS may be too small or too large if significant correlation of data errors
is not properly handled by techniques such as blocked resampling. BS is not specifi-25

cally designed to explore rotational ambiguity, although some rotational uncertainty is
captured in the analysis of the resamples. Since rotational uncertainty is limited by the
number of zero values in G and F, and since the resampling for BS may omit some or
all of the G zero values, BS may estimate a large variation in a PMF solution, especially
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in small data sets. Whether this large variation is appropriate depends on the reliability
of the zero values. If the zero values are erroneous or are not expected to recur, then
the large variation is correct. If the zero values are reliable, then the large variation is
not correct. With regard to modeling errors, it is not known how well BS captures the
uncertainty from this cause.5

Displacement analysis (DISP) obtains uncertainty estimates for individual variables
in fitted F by repeatedly fitting the model such that each variable in turn is perturbed
(displaced) from its fitted value. Each displacement is extended until the object func-
tion Q increases by a predetermined amount dQmax. Each such extended displace-
ment is interpreted as the upper or lower interval estimate of the perturbed variable.10

DISP captures the uncertainty caused by data errors, provided that the user-provided
data uncertainties are correct for the data and they obey the assumptions of the PMF
model. DISP uncertainty estimates underestimate real uncertainties if data errors are
correlated, modeling errors are present, or actual data errors exceed assumed data
uncertainties. On the other hand, DISP uncertainty estimates overestimate real uncer-15

tainties if actual data errors are smaller than those assumed. By design, DISP captures
the uncertainty from rotational ambiguity. As with other methods, it is not known how
well DISP captures uncertainty from modeling errors.

2 Previous work

2.1 Uncertainty of factor analytic results in analytical chemistry20

Most prior work in assessing uncertainties of factor analytic results has been carried
out with methods applied in analytical chemistry (AC). Unfortunately, most of these
methods are not applicable for use in environmental source apportionment (ESA). One
reason for this is that data uncertainties play a lesser role in AC because chromatogram
data are usually more precise than ESA data. A second reason is that AC data are25

more structured than ESA data. For example, in chromatograms, if the data have been
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corrected to baseline, then each true component may be assumed to have a number of
consecutive zero values preceding the peak. The first AC results that are applicable are
due to Gemperline (1999). In this work, structural features typical of AC are not utilized.
Instead, rotations of the computed G and F factors are considered under feasibility
constraints, typically under non-negativity of G and F. By using non-linear optimization5

algorithms, two “extreme” rotation matrices Tk are determined for each factor k of the
model. For each factor k , those matrices minimize and maximize the fraction Xk of
matrix X that is explained by factor k .

In order to discuss the method of Gemperline, Eq. (1) is written in the following form
(Eq. 3):10

X = GF+E =
p∑

k=1

gk fk +E =
p∑

k=1

Xk +E. (3)

Here, gk denotes column k of G, fk denotes row k of F, and Xk = gk fk is the part
of data matrix X that is explained by factor k . The non-linear optimization problem for
factor k is the following (Eq. 4):

Given G0 and F0,
define G = G0Tk and F = T−1

k F0

determine Tk such that G ≥ 0, F ≥ 0, and
norm (Xk ) = norm (gk fk ) is maximized (or minimized).

(4)15

The vectors gk and fk obtained by maximization constitute the upper interval estimates
for factor k . Similarly, minimization produces lower interval estimates.

Romà Tauler and co-workers have continued to develop the method originated by
Gemperline (Tauler, 2001; Abdollahi et al., 2009; Jaumot and Tauler, 2010). The last
two references contain useful literature references to other work in this field. In the 200920

paper, an illustrative example of the optimization task is presented for the two-factor
case (p = 2). In the original Gemperline paper, sum of elements was used as the norm
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in Eq. (4). In later papers, other norms have also been used, such as the Frobenius
norm. It appears that slightly different results may be obtained with different norms.
Also, scaling of rows and columns of matrix X may influence the obtained uncertainty
limits.

There is a fundamental difference between the present work and the works of Gem-5

perline and Tauler (G–T). The G–T limits for factor k represent values that might be
obtained by factor k in one particular solution of the factor analytic problem. Our lim-
its, on the other hand, represent limits of values of individual factor elements – these
limits are determined individually, without regard to each other. Thus, a collection of
upper-interval estimate values of factor k computed by one of our methods produces10

a hyperbox that may contain points that are not feasible solutions of the problem. It fol-
lows that our limits are expected to be wider than the G–T limits. This is not a problem
of either method. It is simply a consequence of different problem definitions.

2.2 Uncertainty of factor analytic results in environmental research

The earliest contribution towards understanding rotational ambiguity in factor analy-15

sis is probably by Henry (1987). In this work, the importance of rotational uncertainty
is emphasized, while no methods are presented for deriving uncertainty limits. Later,
Henry (1997) developed Unmix, a model for solving Eq. (1) subject to non-negativity
constraints. Included with the Unmix model are estimates of uncertainty in factor pro-
files, estimates derived using block bootstrapping.20

Hedberg et al. (2005) tested the robustness of the PMF model with a cross-validation
method. They analyzed randomly reduced data sets that included 85, 70, 50, and 33 %
of the original samples. In this way they tested the ability of the model to reconstruct the
factors initially found when modeling the original data set. On average, for all factors,
the relative standard deviation increased from 7 to 25 % for the variables identifying the25

factors, when decreasing the data set from 85 to 33 % of the samples.
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The cross-validation method of Hedberg et al. (2005) is conceptually similar to the
bootstrap method used in present work. However, they used cross validation only for
qualitative confirmation of PMF modeling, not for determining uncertainty limits.

3 Methodology

3.1 Overview of uncertainty estimation methods in ME-2 and EPA PMF5

Three uncertainty estimation methods are now available in ME-2 and EPA PMF: boot-
strapping (BS), dQ-controlled displacement of factor elements (DISP), and bootstrap-
ping enhanced with DISP (BS-DISP). BS is a typical statistical method for estimating
uncertainty. As implemented, BS involves resampling the input data set, fitting PMF
model parameters for this resampled data set, and then using the variations among10

these resampled or “bootstrapped” fitted profiles to estimate the uncertainty of the ini-
tial PMF solution. BS has been available in EPA PMF v1.1 and all subsequent versions,
and many publications have reported uncertainty estimates from EPA PMF.

Since BS does not explicitly include rotational ambiguity, DISP was developed. DISP
intervals, however, are directly impacted by inaccuracies in data uncertainties. Thus,15

a method combining BS’s strength with data errors and DISP’s strength with rotational
uncertainty was developed into the method BS-DISP. Details of the DISP and BS-DISP
methods are presented below. Since BS is a standard statistical method, descriptions
of its theoretical foundations are left to textbooks (e.g. Efron and Tibshirani, 1993).

The goal of DISP is to provide uncertainty estimates in such cases where data er-20

rors obey the assumptions of the PMF model (i.e. uncorrelated data errors with known
data uncertainties) and there are no modeling errors. DISP uncertainty estimates con-
tain good estimates of rotational uncertainty as demonstrated with synthetic data sets
(discussed in Sect. 4). However, DISP uncertainty estimates underestimate real un-
certainties if data errors are correlated, modeling errors are present, or actual data25

errors exceed assumed data uncertainties. In order to obtain more reliable estimation
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of uncertainty due to data errors, a BS or BS-DISP analysis may additionally be per-
formed and results compared to those from DISP. BS or BS-DISP are also necessary
techniques for estimating uncertainty for species that are downweighted in the PMF
analysis (i.e. species for which the adjusted data uncertainty values have intentionally
been increased to reduce their influence in the minimization of Q). For such species,5

uncertainties estimated by DISP are known to be too large. BS-DISP is a combination
of bootstrap and displacement methods in which each resampled data set is decom-
posed into profile and contribution matrices and then fitted elements in F are displaced.
The collection of all results from the process of resampling, decomposing, and displac-
ing is then summarized to derive uncertainty estimates. Intuitively, this process may be10

viewed as follows: each BS resample results in one solution that is randomly located
within the rotationally accessible space. Then, the DISP analysis determines an ap-
proximation for the rotationally accessible space around that solution. Taken together,
all the approximations of rotationally accessible spaces for randomly located solutions
represent both the random uncertainty and the rotational uncertainty for the modeled15

solution to the complete data set. Since both the BS and DISP phases explore the
rotationally accessible space, the DISP phase may be executed with weaker displace-
ments than when only DISP is used to estimate uncertainties. As a result, BS-DISP is
less sensitive to inaccuracies in data uncertainties.

In principle, BS-DISP should determine the rotational uncertainty well. However, data20

sets with a scarcity of rotation-blocking zero values in G factors pose the same problem
for BS-DISP as with classical BS. Specifically for resamples omitting some or all of the
zero values, large rotations are possible. To reduce the impact of these large rotations,
the 5th percentile of minimum interval estimates and 95th percentile of maximum inter-
val estimates may be used. There is insufficient practical experience with varied data25

sets to know whether using these, or any, percentiles adequately addresses this issue.
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3.2 Mathematical approach in DISP

This section describes the computations for DISP, whether DISP is performed alone
or as the second phase of BS-DISP. Computations are first described for well-defined
cases, those for which factors do not change so much after displacement that they
exchange identities (“factor swapping”). Later, computations are presented for the case5

complicated by factor swapping.
Superscripts are used for denoting different variants of a matrix. As an example,

(G0, F0) and (G1, F1) may denote two different solutions of a PMF problem. Usually,
(G0, F0) denotes the solution obtained by PMF when no displacements are applied.
Individual factor elements are then denoted by using both subscripts and superscripts;10

for example, g0
ik and f

0
kj may denote the elements of matrices G0 and F0.

For DISP analyses, F factor elements are chosen, one by one, to be displaced.
The chosen element is denoted by fkj , so that k denotes the factor and j denotes the
variable. Usually, only a subset of all F elements is chosen to be displaced. Details of
why and how to choose are discussed later.15

The DISP approach is based on the increase of the PMF sum-of-squares function
Q. The function may be the basic Q defined as follows by Eq. (5):

Q = min
F,G

n∑
i=1

m∑
j=1

((
xij −

p∑
k=1

gik fkj

)/
uij

)2

(5)

where all elements of G and F have been determined so as to achieve best possible fit
(i.e. lowest possible value of sum-of-squares). However, the function Q may also be any20

enhanced form of the object function, such as a robust sum obtained by reweighting
of outlying data values or a sum enhanced by penalty terms like those used for pulling
chosen factor elements towards preferred values.
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The notation Qopt denotes the lowest possible Q function value obtained by vary-
ing all factor elements. The notation Q

(
fkj = d

)
denotes the smallest sum-of-squares

value obtained when constraining the indicated factor fkj to a fixed feasible value d and
varying all other factor elements. Finally, the increase of Q is denoted by Eq. (6):

dQ
(
fkj = d

)
= Q

(
fkj = d

)
−Qopt. (6)5

The essence of DISP is to find the largest and smallest feasible values dmax and dmin

such that

dQ
(
fkj = dmax) ≤ dQmax

dQ
(
fkj = dmin

)
≤ dQmax (7)

where dQmax is a predetermined maximum allowable change in Q (Eq. 7). The val-
ues dmax and dmin can be determined by using any available non-linear optimization10

algorithm. In this work, the ME-2 program is used under control of an enhanced script.
The obtained values dmax and dmin represent upper and lower interval estimates for

factor element fkj . The limit value dQmax is chosen by the user. In practice, the DISP
approach is implemented so that estimation is performed using a set of four dQmax

values chosen by the user. Thus four pairs of upper and lower interval estimates are15

obtained for each displaced factor element. A typical set of dQmax values would be
{4, 8, 16, 32} for DISP and {0.5, 1, 2, 4} for BS-DISP. Larger dQmax values usually
produce wider uncertainty intervals which in turn usually have higher probabilities of
including true unknown values. However, wider intervals may be so wide that they
cannot support meaningful conclusions. For DISP, analogy with customary linear least20

squares models suggests that executing with dQmax = 4 results in interval estimates
that are minima for the true uncertainty estimates, provided the user-specified data
uncertainties are reasonable for the data (see Supplement for additional discussion). If
a minimum interval estimate is sufficient to support or refute a postulated hypothesis,
then no additional uncertainty analysis is warranted.25
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The choice of dQmax values will depend on assumed magnitudes of modeling er-
rors, as discussed in Sect. 1.5. Reliable estimates of modeling errors are usually not
available. It follows that dQmax values cannot be deduced from statistical theory. Ex-
perimental evidence must be used.

3.3 Implementation of DISP in ME-2 and EPA PMF5

Equations (5) to (7) would lead to a straightforward and reasonably efficient algorithm.
However, they cannot be applied as such because of the automatic dynamic reweight-
ing that is used for several purposes, most importantly for robust estimation, in PMF.
With such reweighting, the numerical value of Q changes whenever the weights are
recomputed. Such changes of Q are not directly related to changes in the fit. Hence,10

such changes cannot be used as basis of uncertainty estimation.
As a substitute, the DISP approach estimates dQ values using a partial derivative

(or gradient) of Q with respect to the displaced variable (Eq. 8):

dQ
(
fkj = d

)
= 0.5

∑z
v=1

(
dv −dv−1

)( ∂Q
∂fkj

∣∣∣
fkj=dv

+ ∂Q
∂fkj

∣∣∣
fkj=dv−1

)
= 0.5

∑z
v=1

(
dv −dv−1

)(
grad

(
fkj = dv

)
+grad

(
fkj = dv−1

))
where d0 = f

0
kj and dz = d .

(8)

This definition is based on a sequence of z displaced values dv , generated automati-15

cally by the algorithm. The model is fitted using each displaced value in turn, and the
corresponding gradient values are saved. The proxy dQ value is obtained using dis-
placement step lengths and gradients at each displaced point. This method is approxi-
mate and becomes more accurate if a larger number of intermediate displacements are
used for reaching the final displacement d . The quality of approximation has been ob-20

served in cases where no dynamic reweighting is present so that actual Q values may
be used for computing non-approximate dQ values. The sequences created automat-
ically by the current implementation of DISP appear to be a satisfactory compromise
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between computational efficiency and accuracy of approximation. Determination of the
sequence of displaced values dv is based on various heuristic principles designed to
balance between too-long displacements (indicated by sudden increase of gradient and
dQ or by reversal of gradient) and too-short – and hence inefficient – displacements.
If a displacement is found to be too long, it is rejected and a shorter displacement is5

attempted instead.
The sequence of displaced values does not usually hit the desired value for dQ,

namely dQ = dQmax, as required by the definition of the uncertainty interval in Eq. (7).
As shown in Eq. (9), the sequence generally ends so that

dQ
(
fkj = dz−1

)
< dQmax

dQ
(
fkj = dz

)
> dQmax.

(9)10

In order to obtain the desired critical value (dmax or dmin), an interpolation is performed.
It is assumed that the gradient changes linearly in the interval (dz−1 < d < dz). With this
assumption, the value dmax for displacing up may be computed (Eq. 10) so that

dQ
(
fkj = dmax) ≈ dQmax. (10)

Similarly, when displacing down, the value dmin is obtained so that (Eq. 11)15

dQ
(
fkj = dmin

)
≈ dQmax. (11)

These interpolations are computed separately for each of the four dQmax values. Using
the interpolated displacement values and factor matrices computed at each displace-
ment, it is possible to also interpolate the values of factor matrices G and F so that the
interpolated values correspond to the solution of Eq. (7). In current implementation,20

only elements of factor matrix F are interpolated, however.
It is to be noted that displacements do not proceed past lower or upper constraints

for each displaced factor element. Whenever the constraint would be violated, the last
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displacement is truncated so that it exactly corresponds to the constraint for the vari-
able. If the dQ at the constraint value does not exceed the chosen dQmax, then the
constraint value is used as the interval estimate of the variable. For this reason, lower
interval estimates of F factor elements may appear as exactly zero.

3.4 Active and passive estimation with DISP and BS-DISP5

The intervals obtained by displacing a factor element fkj include both rotational ambi-
guity and uncertainty due to assumed data uncertainties. In order to speed up compu-
tation of BS-DISP, it is preferable to displace a small subset of all F factor elements, the
active elements of F. Usually, one would displace those variables important for factor
identification or variables key to a particular question.10

It is possible to estimate uncertainty intervals for those factor elements that are not
displaced. Intervals for such passive factor elements are obtained as a by-product dur-
ing displacements of active elements. As described, all elements of F are obtained for
each (interpolated) displacement that solves Eq. (7). The DISP algorithm finds largest
and smallest values f

max
kj and f

min
kj of each passive element fkj among all interpolated15

F matrices that occur while displacing all active elements. These extreme values con-
stitute passive interval estimates for the passive (non-displaced) F factor elements.

Passive interval estimates reflect rotational ambiguity well. In contrast, they do not
contain uncertainty due to assumed data uncertainties of the passive factor elements.
In BS-DISP, assumed data uncertainties play a minor role because uncertainty caused20

by data noise is mainly estimated by resampling. Thus passive estimation is useful in
BS-DISP, provided that the number of active elements is large enough that rotationally
accessible space is exhaustively visited. In DISP, however, passive interval estimates
are less useful because they ignore data uncertainties of passive factor elements. For
this reason, in pure DISP computations one would prefer to displace all factor elements.25

Downweighted variables create a special problem in DISP computations. If such
variables are displaced, their obtained active interval estimates will be much too long;
because the assumed data uncertainties are much too large, using the default dQmax

7610

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/7593/2013/amtd-6-7593-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/7593/2013/amtd-6-7593-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
6, 7593–7631, 2013

Methods for
estimating

uncertainty in factor
analytic solutions

P. Paatero et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

limits will result in very large residuals for the downweighted variables. The best com-
promise seems to be that downweighted variables are never chosen for active estima-
tion in DISP or in BS-DISP. If not active, downweighted variables will obtain passive
interval estimates, intervals that may be too short from DISP but satisfactory from BS-
DISP.5

3.5 Factor swaps in DISP from not-well-defined solutions

Starting from one good solution, it may be possible to transform the solution gradually,
without significant increase of Q, so that factor identities change. In the extreme case,
factors may change so much that they exchange identities. This is called “factor swap.”
A solution with swapped factors represents the same physical model as the original10

solution. However, the presence of factor swaps means that all intermediate solutions
must be considered as alternative solutions. In such a case, the modeling supports
a many-dimensional infinite population of solutions where it is not possible to single out
one of these solutions as “the solution,” hence the terminology “not-well-defined (NWD)
solution.” Often, factor swaps occur only within a subset of all factors. Then the model-15

ing may provide useful information about those factors that do not participate in swaps.
DISP and BS-DISP analyses provide diagnostic output to aid in the identification of
factors involved with swapping.

The significance of factor swaps from NWD solutions came as a surprise. There
is little practical knowledge about these situations, and therefore conclusions in this20

section are of preliminary nature.
To detect factor swaps, consider two solutions: the original solution (G0, F0) and the

transformed solution (G1, F1). Testing for swaps may be based on G matrices or on F
matrices. In the case of complete swaps, testing using either matrix produces identical
conclusions. In borderline cases where factors change significantly but a complete25

swap does not occur, the G and F tests are not fully equivalent. Equations 12 through
15 are given for testing G matrices. F tests are obtained by replacing G by F in the
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equations. Two methods are available for detecting factor swaps: one based on cross
correlations and the other based on regression.

For cross correlations, “uncentered” correlation coefficient r between two vectors u

and v is defined by

r = corr(u,v ) =
u
′
v

√
u′u v ′v

. (12)5

This differs from Pearson correlation, which is centered and is commonly used in social
and biological sciences.

Define centered variables: ũ = u−u ṽ = v − v

r = corrPearson(u,v ) = ũ
′
ṽ√

ũ
′
ũ ṽ

′
ṽ

. (13)

Because Pearson correlations can be meaningless if some factors are nearly con-
stant, uncentered correlations are used to detect factor swaps. Specifically, a matrix of10

correlation coefficients is computed, so that each matrix element is the correlation co-
efficient between one column of G0 and one column of G1. A factor swap is seen in this
correlation matrix so that two or more diagonal entries are small while corresponding
off-diagonal entries are ≈ 1.

In the regression approach, a transformation matrix (or regression matrix) T is com-15

puted for approximating G1 by a transformed G0. The approximation is defined by

G1 = G0T+E ≈ G0T (14)

where matrix T is obtained from

T =
(

G0′G0
)−1

G0′G1. (15)

It is assumed that G0 is of full column rank. If there are no factor swaps, T is approxi-20

mately diagonal, so that off-diagonal elements are small positive and negative values.
With a factor swap, the rows of T become permuted so that at least two diagonal ele-
ments change positions with smaller off-diagonal elements.
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3.6 Decrease in Q with DISP

Occasionally displacements cause a significant decrease of Q, typically by tens or even
hundreds of units. If such decrease occurs in DISP analysis or when analyzing the
complete (not resampled) data in BS-DISP, it means that the base case solution was in
fact not a global minimum, although it was assumed to be such. This is a fatal error and5

invalidates the DISP analysis. It is necessary to go back to solving the original PMF
model again, perhaps using many more random starts, to find the global minimum.
Then the DISP analysis may be continued.

Decrease of Q may also occur when performing displacements in the analysis of BS-
DISP resamples. Such decrease indicates that resampling created a new minimum,10

different from the original base case solution. In one case, the initial not-displaced fit
of this BS resample did not succeed in finding the new global minimum, while the
displacement “nudged” the solution towards the global minimum. In such a case, it is
best to reject the resample because no meaningful error limits can be obtained. The
overall BS-DISP analysis remains valid even if a few resamples get rejected, though15

currently there is no way to quantify the number of rejections that will yield meaningful
results.

3.7 Development and modeling of synthetic data sets

Simulated data were designed to demonstrate the three uncertainty estimation meth-
ods. The data were generated using partial results from a PMF application to PM2.520

speciated data collected in Phoenix (Eberly and Reff, 2007). Fitted gk and fk for four
of seven factors from the previous PMF analysis were selected to represent the true
matrices G and F. Four factors – representing copper smelting, coal combustion, aged
sea salt, and soil – were used to simplify the simulation and modeling. Some factors
are small contributors on average and others are large, a desired characteristic for the25

simulated data. Specifically, average contributions are 49 % for coal combustion, 2 %
for aged sea salt, 9 % for copper smelting, and 40 % for soil. Sixteen species are in-
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cluded: PM2.5, Elemental Carbon (EC), Organic Carbon (OC), Si, S, Cl, K, Ca, Ti, Mn,
Fe, Ni, Cu, Zn, Se, and Pb. Profiles for the four factors are included in the Supplement,
Table S-1.

To generate the simulated data, G and F based on the four previously modeled
factors were multiplied to form C, per notation described in Eq. (1). Error-containing5

values X were obtained from pseudorandom distributions of lognormal variates with
mean C and standard deviation S, where S was specified by two equations to evaluate
impacts of standard deviations on uncertainty estimates. Case 1 assumed small errors
such that sij = 0.05cij . Case 2 assumed realistic errors such that sij = zjcij , where zj
varied from a small value of 0.05 for well-measured species to a value of 1.2 for species10

with large measurement errors. Specifically, values for zj are Ca 0.2; Cl 0.5; Cu 0.2;
EC 0.12; Fe 0.1; K 0.1; Mn 0.15; Ni 1.25; OC 0.1; Pb 0.5; PM2.5 0.08; S 0.05; Se 0.4;
Si 0.35; Ti 0.9; and Zn 0.13. For this work, a simplifying assumption was made that
detection limits are approximately zero.

The object function Q in Eq. (2) requires user-provided data uncertainties uij . These15

were set equal to the data uncertainties used in deriving the simulated values, namely
uij = sij . In reality, the user rarely knows the exact amount of uncertainty in the actual
data. To simulate this discrepancy, one additional case was modeled. For Case 3, the
data were generated using the small errors of sij = 0.05cij , but the uncertainties given
for Eq. (2) were derived by uij = 0.001+ 0.03 xij . Case 3 contained another intentional20

inconsistency: a total of 5 factors were fitted, one more than were used to generate the
data.

Data sets comprised either 50 or 261 samples. Modeling was done through direct
interaction with ME-2 via PMF_bs_6f1.ini and me2gfP4_1345c4.exe, rather than EPA
PMF. The lower limit allowed for fitted G factor elements was −0.10, error model −1225

was used, and the block size for bootstrapping was 1. For each data set analyzed, 15
base case runs were executed to determine a solution presumably associated with the
global minimum for Q.
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4 Results and discussion

DISP, BS, and BS-DISP were run for each of the three synthetic cases. For Cases 1
and 2, the correct number of factors, four, was fitted. For Case 3, five factors were
fitted, one more than needed. Modeling resulted in fitted factors for Cases 1 and 2
of Soil, Salt, Copper, and Coal. For Case 3, with the n = 50 data set, the factors are5

Soil, Salt, Copper, Coal, and an extra factor composed of some EC, OC, Ni, S, and
PM2.5; in the n = 261 data set the factors are Soil, Salt, Copper, and Coal split into
two pieces. No species were downweighted, so all species were active in DISP. DISP
results were generated with dQmax values of 4, 8, 15, 25, the values used in EPA PMF.
For BS, factors were assigned to base case factors based on uncentered correlations10

of contributions (i.e. time series). A correlation of 0.80 or larger was required for the
assignment to be valid. Three hundred bootstraps were used for this demonstration.
For BS-DISP, only those species key in factor identification were active in the DISP
phase: Ca, Cl, Cu, Fe, PM2.5, S, and Ti. BS-DISP was executed using 50 BS runs and
dQmax values of 0.5, 1, 2 and 4, the values used in EPA PMF.15

4.1 Analysis of synthetic data sets – diagnostics

Table 1 summarizes the diagnostics reported by ME-2 for data sets with 50 or 261
samples. For brevity, detailed discussion of these diagnostics is confined to the data
sets with 50 samples. Diagnostic results were similar for the 261-sample data set. To
put decreases of Q into perspective, robust Q values for the data set with 50 samples20

were 500–600 for Cases 1 and 2 and 340 for Case 3. For the data set with 261 samples,
robust Q values were approximately 3000 for Cases 1 and 2 and 1800 for Case 3.

4.1.1 Decrease in Q for DISP

Small decreases in Q (less than 0.2) were reported for Cases 1 and 2 indicating that
these solutions were global minima. A large value (greater than 2.5) was reported25
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for Case 3, providing the first indication that there is something problematic with the
modeling.

4.1.2 Swapped factors for DISP

For Cases 1 and 2, no factors swapped for any values of dQmax, indicating that these
were all well-defined PMF solutions. For Case 3, the copper factor was not involved5

in swaps for the smallest dQmax value, so DISP interval estimates for this factor were
reliable and realistic for the smallest displacement. All other factors of Case 3 were
involved with swaps for each dQmax value, and therefore DISP cannot provide error es-
timates for these factors. The extra factor (Factor 5) was involved in numerous swaps
compared to the other factors, confirming that one too many factors was modeled.10

When only four factors, the true number, were modeled for Case 3, the DISP diagnos-
tics indicated no factor swaps.

4.1.3 Assigning BS factors to base case factors

All bootstrap factors were assigned to base case factors in 99–100 % of every bootstrap
resample for Case 1. For Case 2, the salt factor was not consistently identified in 33 %15

of the resamples. This lack of reproducibility was likely caused by two compounding
issues. One was that the factor was composed of just one species, Cl, with a small
amount of EC. The other was that the factor’s contributions were defined by a few large
values that could be excluded in BS resamples. For such resamples, this factor could
be incorporated into other factors. For Case 3, all factors were reproduced in every20

bootstrap except that Factor 5 (the extra factor that is comprised of small pieces of
several species), was rarely found, confirming that one too many factors was modeled.

4.1.4 Decrease in Q and swapped factors in BS-DISP

In Case 1, no swaps occurred in the initial refitting of the full data set and no BS re-
samples were rejected because of swaps or large decreases in Q. This indicates that25
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Case 1 was a well-defined PMF solution. For Case 2, diagnostics showed that 16 % of
the resamples exhibited large decreases in Q and 8 % contained swapped factors. The
large decrease in Q compared to Case 1 is likely due to the larger data uncertainties
used in Case 2. This indicates that Case 2 was not as well defined as Case 1, but there
were few enough rejected resamples that error estimates summarized for the accepted5

resamples were likely reliable and robust. For Case 3, all factors were involved in nu-
merous swaps, indicating serious problems with the modeling and warning that interval
estimates should not be interpreted.

4.2 Analysis of synthetic data sets – interval estimate examples

Output from DISP, BS, and BS-DISP includes interval estimates for each element for10

each factor and diagnostics for evaluating the trustworthiness of the interval estimates.
As discussed in Sect. 3.2, estimates of intervals are calculated as follows: for DISP,
endpoints of the uncertainty interval for a specific F factor element are the minimum
value for that factor element observed in all displacements and the maximum value
for that factor element observed in all displacements. For BS, the endpoints of the un-15

certainty interval for a factor element are the 5th and 95th percentile values for that
factor element from all bootstrap resamples. For BS-DISP, each bootstrap resample is
displaced and minimum and maximum values are calculated for each factor element
as described for DISP. Then percentiles are taken across the resamples, the 5th per-
centile of the minima and the 95th percentile of the maxima, to create the final interval20

estimate.
Many intervals were estimated: one for each factor element for each error method for

each data set studied. Table 2 contains upper and lower interval estimates for all error
methods for a selected case, Case 2, for two selected species: PM2.5, a species of inter-
est across all factors (Table 2a), and Cu (Table 2b), a typical example of a key species25

for identifying one of the factors. For the sake of brevity, only Case 2 is presented, since
the data uncertainties for this case are more typical for ambient measurements.
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For PM2.5 for the data set with 50 samples, the Salt factor’s overall contribution is un-
certain with possible values ranging up to 7 times the true amount. Comparatively, the
Soil and Coal factors’ PM2.5 mass estimates are more robust, with estimates ranging
from about half of the true amount to just 10 % more for DISP and BS and 20–30 %
more for BS-DISP. The Copper factor is in between, with PM2.5 estimates ranging from5

a third of the true value to 1.5 to 2 times the true amount. The size of these intervals
may seem large, but this data set contains just 50 samples. For comparison, inter-
vals for the data set with 261 samples are included in the lower halves of Tables 2a
and b. The markedly shorter intervals for the larger data set show the power of having
more data. Intervals estimated from the smaller data set support the idea presented10

in Sect. 1.6 about the sensitivity of BS to zero values in G, as evidenced by the long
BS (and therefore BS-DISP) intervals compared to DISP. This difference nearly disap-
pears for the larger data set, supporting the idea presented in Sect. 1.4 that rotational
uncertainty plays a lesser role in larger data sets.

For Cu, again the intervals for the larger data set are markedly shorter than those15

for the smaller data set. Another note is that many of the intervals do not contain the
true amount of Cu for the Copper factor. That is, these error methods do not always
produce intervals that contain the true value.

4.3 Analysis of synthetic data sets – summary of comparisons

As seen in Table 2, different error methods can produce the shortest interval depend-20

ing on the dataset. Sometimes an error method’s interval includes the true value and
sometimes it does not. Given the large number of intervals estimated, it is challenging
to determine which error method is consistently producing shorter intervals or inter-
vals that include true values. To aid in the comparison of one error method to another,
summary statistics that aggregated over all factor elements were calculated. Three25

summaries were calculated. One was percent coverage, the number of intervals con-
taining true F factor element divided by total number of F factor elements. The second
and third were median and average ratios for intervals. These were calculated as fol-
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lows: length and midpoint of each interval for each F factor element were computed.
Then length was divided by midpoint to create a unitless quantity that can be com-
pared across factor elements of differing magnitude. Median and average ratios were
calculated across all F factor elements.

To test repeatability of results, two replicates of each data set were generated and5

modeled. The original data set contained 783 observations. For the 261 day replicates,
every third sample was retained, starting with the first sample for Subset 1 and the
second sample for Subset 2. For the 50 day replicates, every 15th sample was retained,
starting with the first sample for Subset 1 and the second sample for Subset 2. DISP
results are presented only if no swaps occurred and if Q decreased minimally (less than10

0.5). BS was run with 300 resamples and results are presented only for assignments
of BS factors to base case factors with uncentered correlations of 0.80 or higher and
for which only one bootstrap factor is allowed to be assigned to each base case factor.
BS-DISP was run for 50 of the BS resamples. Summaries are formulated only of such
BS resamples in which no swaps occurred. Interval estimates were summarized over15

all factors (upper row in table cells) and also over all factors excluding the sea salt
factor (lower row) since modeling of bootstrapped resamples did not always fit a factor
highly correlated with the sea salt factor (as described in Table 1). Case 3, the case in
which modeling error was introduced, was excluded from this summary analysis since
diagnostics for this case indicated problems, as discussed in Sect. 4.1. Results are20

presented in Tables 3a and b.
These summaries show that percent coverage is generally high, greater than 90 %,

except for BS and for BS-DISP with the larger data set for Case 2. Also, DISP generally
provides the shortest intervals except for Case 2 with the larger data set where BS
provides the shortest intervals.25

Results from Subset 1 and Subset 2 are similar for DISP and BS-DISP. Unexpectedly,
BS results vary by subset. The reason is unclear at this time, but it may have to do with
the number of zeros in G for the two subsets. For the data set with 50 samples, Subset
1 has 3, 3, 7, and 1 zeros and Subset 2 has 1, 6, 12, and 1 zeros for Coal, Salt, Copper,
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and Soil factors, respectively. For the data set with 261 samples, Subset 1 has 6, 17,
27, and 8 zeros and Subset 2 has 5, 26, 44, and 7 zeros for Coal, Salt, Copper, and
Soil factors, respectively. It does not take many zeros to reduce rotational uncertainty;
thus, the larger number of zeros for Subset 2 of the smaller data set could explain
the shorter intervals. The cause for lower percentage coverages for BS for Subset 2 is5

unknown.
As expected and seen with the examples presented in the previous section, it is

noted that intervals are shorter for the larger data set. This is true for all methods
and both case studies. What is not expected is that percentage coverage is lower for
the larger data set. The cause is unclear; however, a proposed explanation is that the10

likelihood of excessively long intervals is higher for smaller data sets because there are
fewer zeros in G. These excessively long intervals will in turn result in unnaturally high
coverage.

The conclusion from the analysis of these synthetic data sets is that DISP consis-
tently provides intervals that have high coverage (> 90 %) and that are shorter than15

those provided by BS or BS-DISP. BS-DISP sometimes provides intervals with higher
coverage than DISP, but these intervals are generally longer. The performance of error
estimation techniques will depend on the details of each individual data set. Here, the
differences seen for supposedly similar case studies 1 and 2 illustrate the variability
found between data sets.20

Although patterns in relative merits of the three uncertainty estimation techniques
are developing, applying these inferences to all PMF analyses is premature. Variation
in characteristics of data sets (e.g. number of samples, number of zeroes in G) and
modeling errors (e.g. inappropriate number of factors, discrepancies between sij and
uij , handling of values below method detection limit) may lead to different relative merits.25

In order to achieve the best possible uncertainty estimations, the evaluation approach
of this paper should preferably be repeated whenever PMF error estimation is applied to
new kinds of data sets: simulations with realistic true data patterns should be performed
and merits of uncertainty estimates should be evaluated. A forthcoming manuscript
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(Brown et al., 2013) will present case studies of ambient data and interpretation of
results from the three error estimation techniques.

5 Reporting recommendations for PMF analyses

Reff et al. (2007) performed a literature review of publications of PMF applications.
The purpose of the review was to document the numerous decisions that users of5

PMF must make to perform such applications and to encourage that future publica-
tions of PMF applications include enough details for readers to evaluate, reproduce,
or compare results between different studies. In a continuing effort to help make the
reporting of results from EPA PMF and ME-2 more systematic among researchers, we
have summarized recommendations on what to report while documenting uncertainty10

estimates from PMF analyses. This is not an exhaustive list, and every data set may
require that additional information be reported. To increase the understanding of the
behavior of these uncertainty estimates with different types of data, it is recommended
that all three techniques be applied and specific details about and estimated intervals
from each method be reported. For cases where this is not possible or reasonable, it is15

recommended that such reasoning be included in the publication.
BS. Report the number of resamples analyzed and the size of percentiles of the

obtained distribution of results chosen for error limits, e.g. 5th and 95th percentiles.
Also report the percentage of BS factors assigned to each base case factor and the
number of BS factors not assigned to any base case factor.20

DISP. Report species not displaced such as those downweighted, the decrease in
Q, and the number of factor swaps. If factor swaps occur for the smallest dQmax, it indi-
cates that there is significant rotational ambiguity and that the solution is not sufficiently
robust to be used. If the decrease in Q is greater than 1 %, it likely is the case that no
DISP results should be published unless DISP analysis is redone after finding the true25

global minimum of Q.
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BS-DISP. As with BS and DISP, report the number of BS resamples analyzed, the
size of percentiles chosen for error limits, the species actively displaced, the decrease
in Q, and the number of factor swaps.

6 Conclusions

Exercises presented with synthetic data suggest that error intervals estimated by DISP,5

BS and BS-DISP capture with high probability profile values that truly underlie the mod-
eled observations. Numerous simulations were performed in addition to those reported
in this work. All indicate that if data uncertainties are known and there are no model-
ing errors, then the DISP method consistently produces good coverage of true values
using the shortest possible uncertainty intervals. In the more difficult cases where data10

uncertainties are not well known, the bootstrap-based methods BS and BS-DISP seem
to work satisfactorily provided that there are no modeling errors.

Present work offers no quantitative results for the situations where significant mod-
eling errors exist. It was seen that one type of modeling error, specifying more factors
than the data support, leads to diagnostics that suggest to an attentive PMF user that15

there are too many factors. However, it is not currently known whether diagnostics will
be as clear if multiple modeling errors are present. For example, censoring a large
number of values below detection limit, another type of modeling error, may invalidate
uncertainty analysis by BS, DISP, and BS-DISP.

It was seen that some data sets produce large rotational uncertainties for some20

or all factors so that interval estimates may extend down to zero even for some of the
defining “key” species. In such cases, factor identities may become fluid, often indicated
by factor swaps. The obtained uncertainty intervals are then imprecise because of the
difficulty of defining the borderline between rotations and swaps. Although the methods
will correctly indicate that uncertainties are large, they may not produce quantitative25

results for these large intervals. On the other hand, this “weakness” caused by factor
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swapping may not be important in practical work. Simply put, it does not matter whether
uncertainty is rather large or very large.

When interpreting large uncertainties, there is a conceptual issue that warrants high-
lighting. Suppose a factor is associated with a known source or sources based on the
initial computed composition. For example, suppose factor F1 is identified as “Diesel5

vehicles” based on a high value of EC. Now suppose that the estimated uncertainty
for EC for factor F1 shows that there may be low or no EC apportioned to the fac-
tor. This would then call into question the association of this factor with the postulated
source. Therefore, when discussing uncertainties, they should be called uncertainties
in factor F1, not uncertainties in the diesel source profile. If the uncertainties are small10

enough that the source or sources associated with a factor are not called into question,
then it is reasonable to refer to the uncertainties as uncertainties in the source profile.
When reporting results, it is important to document each factor for which the size of
the uncertainties calls into question the source or sources initially associated with that
factor.15

If large uncertainties are obtained for a PMF solution, the next step is for the analyst
to determine whether physical-chemical arguments can be applied to reduce the vari-
ability of the results. Different constraints can be defined, for example by constraining
certain G or F factor elements to be zero (Paatero et al., 2002). Narrower uncertainty
intervals will be obtained. However, no results from such experiments are included in20

this work.
It has been customary to report uncertainties in the symmetric form, as “best fit ±

uncertainty.” In the present case, such formulation is not adequate since uncertainty
intervals need not be symmetric. Uncertainties should be reported in unsymmetric for-
mulation, for example as “best fit +u−d” where u and d represent the width of interval25

up and down from best fit, respectively. It should be noted that these intervals are not
standard deviations of “errors.” Rather their nature is that of “Confidence Intervals,”
meaning that with a high (albeit often unknown) probability, the intervals contain the
unknown true values.
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The addition of DISP and BS-DISP capabilities in EPA PMF and ME-2 will help users
better understand sources of variability in their PMF results. Such understanding may
include identifying samples that are highly influential in the error estimation, identifying
species for which user-provided data errors are too low or too high, or determining
that too many factors have been modeled. Using DISP, BS, and BS-DISP as a suite of5

techniques for estimating uncertainty in PMF solutions can be more illuminating than
using just one technique, much as using multiple receptor models to analyze a data set
can provide more insight into the solution than using just one.

Comparing merits of different estimation principles is not straightforward, because
widely varying characteristics are inherent in data sets and numerous types of model-10

ing errors may occur. For the synthetic data developed for this work, it was seen that
BS had longer uncertainty intervals and lower coverage, DISP had shorter uncertainty
intervals and higher coverage, and BS-DISP had high coverage with uncertainty inter-
val lengths between those of BS and DISP. This suggests that DISP and BS-DISP are
better at assessing uncertainty than BS.15

7 Disclaimer

The United States Environmental Protection Agency through its Office of Research and
Development funded and collaborated in the research described here under contract
EP-D-09-097 to Sonoma Technology, Inc. It has been subjected to Agency review and
approved for publication.20

Supplementary material related to this article is available online at http://www.
atmos-meas-tech-discuss.net/6/7593/2013/amtd-6-7593-2013-supplement.pdf.
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Table 1. Summary of error estimation diagnostics by data set and case study.

Data Set Case
Study

DISP BS BS-DISP

Drop
in Q

Factors
involved in
swaps

BS Factor
assignment to
base case factors

# Rejected BS
resamples

Drop
in Q

Factors involved
in swaps

N = 50 Case 1:
small
errors

0.1 No swaps. Copper: 99 %
Others: 100 %

0 0.2 No swaps.

Case 2:
realistic
errors

0.0 No swaps. Salt: 67 %
Others: 99–100 %

12 out of 50,
some due to
swapping of
factors, some
due to decreases
in Q

21 No swaps for
dQmax = 0.5,
minimal swaps
(1–4) for each
factor for
larger dQmax

Case 3:
small
errors;
too
many
factors

2.6 Factors 1–4
swap 1–8 times,
numerous
swaps for
Factor 5 (Extra)

Extra factor 5: 20 %
Others: 100 %

0 out of 10∗ 0.5 All factors
involved in swaps.

N = 261 Case 1:
small
errors

0.2 No swaps. All: 100 % 0 0.4 No swaps.

Case 2:
realistic
errors

0.0 No swaps. Salt: 92 %
Others: 100 %

2 out of 50 due
to decreases in Q

75 No swaps.

Case 3:
small
errors;
too
many
factors

28 No swaps for
Soil, Copper,
Salt, many
swaps for Coal
and extra factor

Coal and extra
factor 5 : 80 %
Others: 100 %

0 out of 10∗ 0.1 All factors
involved in
numerous swaps,
usually hundreds
of swaps.

∗ Used 10 bootstrap resamples because of the large number of factor swaps.
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Table 2a. Lower and upper interval estimates of PM2.5 (µgm−3) by factor for Case 2 (realistic
errors) for data sets with 50 or 261 samples.

Salt Factor Copper Factor Soil Factor Coal Factor
True PM2.5 = 0.10 True PM2.5 = 0.42 True PM2.5 = 1.82 True PM2.5 = 2.24

Data Set with 50 Samples
DISP (0.00, 0.69) (0.12, 0.62) (1.23, 1.97) (2.08, 2.49)
BS (0.06, 0.75) (0.15, 0.69) (1.16, 1.90) (1.52, 2.38)
BS-DISP (0.00, 0.85) (0.12, 0.93) (1.17, 2.48) (1.54, 2.64)

Data Set with 261 Samples
DISP (0.06, 0.18) (0.33, 0.59) (1.59, 1.92) (2.08, 2.36)
BS (0.10, 0.28) (0.36, 0.54) (1.56, 1.82) (1.98, 2.27)
BS-DISP (0.07, 0.32) (0.33, 0.63) (1.52, 1.99) (2.00, 2.37)
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Table 2b. Lower and upper interval estimates of Cu (µgm−3) by factor for Case 2 (realistic
errors) for data sets with 50 or 261 samples.

Salt Factor Copper Factor Soil Factor Coal Factor
True Cu= 0.0000 True Cu= 0.0025 True Cu= 0.0007 True Cu= 0.0001

Data Set with 50 Samples
DISP (0.0000, 0.0001) (0.0017, 0.0022) (0.0003, 0.0009) (0.0000, 0.0003)
BS (0.0000, 0.0005) (0.0015, 0.0021) (0.0003, 0.0007) (0.0000, 0.0003)
BS-DISP (0.0000, 0.0011) (0.0012, 0.0023) (0.0001, 0.0008) (0.0000, 0.0004)

Data Set with 261 Samples
DISP (0.0000, 0.0001) (0.0021, 0.0025) (0.0005, 0.0008) (0.0001, 0.0003)
BS (0.0000, 0.0001) (0.0022, 0.0024) (0.0005, 0.0007) (0.0001, 0.0002)
BS-DISP (0.0000, 0.0001) (0.0022, 0.0025) (0.0005, 0.0008) (0.0001, 0.0003)
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Table 3a. Summaries of F interval estimates for data sets with 50 observations.

Method for estimating intervals First row: summary over all F factors
(number of bootstraps, dQmax) Second row: summary over all F factors excluding salt

(% coverage, median and avg ratios of length to middle of interval)

Case 1. Small Errors Subset 1 Subset 2
DISP (n/a, 4) 98 %, 0.82, 1.04 100 %, 0.74, 1.00

98 %, 0.51, 0.86 100 %, 0.54, 0.85
BS (300, n/a) 77 %, 0.91, 1.05 73 %, 0.93, 1.00

73 %, 0.57, 0.88 71 %, 0.62, 0.87
BS-DISP (50, 0.5) 100 %, 1.28, 1.25 100 %, 1.25, 1.19

100 %, 1.01, 1.08 100 %, 0.93, 1.05

Case 2. Realistic Errors
DISP (n/a, 4) 95 %, 1.49, 1.31 100 %, 1.47, 1.32

96 %, 1.03, 1.15 100 %, 0.93, 1.16
BS (300, n/a) 78 %, 1.53, 1.36 81 %, 1.39, 1.24

81 %, 1.16, 1.23 79 %, 0.82, 1.06
BS-DISP (50, 0.5) 97 %, 2.00, 1.54 98 %, 1.74, 1.36

96 %, 1.59, 1.39 98 %, 0.98, 1.21
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Table 3b. Summaries of F interval estimates for data sets with 261 observations.

Method for estimating intervals First row: summary over all F factors
(number of bootstraps, dQmax) Second row: summary over all F factors excluding salt

(% coverage, median and avg ratios of length to middle of interval)

Case 1. Small Errors Subset 1 Subset 2
DISP (n/a, 4) 95 %, 0.45, 0.77 94 %, 0.45, 0.84

94 %, 0.32, 0.69 92 %, 0.36, 0.71
BS (300, n/a) 75 %, 0.79, 0.99 56 %, 0.39, 0.78

69 %, 0.40, 0.80 60 %, 0.27, 0.66
BS-DISP (50, 0.5) 98 %, 0.70, 0.96 97 %, 0.57, 0.92

98 %, 0.53, 0.81 96 %, 0.45, 0.76

Case 2. Realistic Errors
DISP (n/a, 4) 92 %, 0.77, 1.01 89 %, 0.80, 1.05

90 %, 0.49, 0.86 85 %, 0.47, 0.86
BS (300, n/a) 75 %, 0.44, 0.82 59 %, 0.58, 0.86

71 %, 0.31, 0.69 63 %, 0.42, 0.80
BS-DISP (50, 0.5) 91 %, 0.85, 1.05 83 %, 0.82, 1.05

88 %, 0.60, 0.90 77 %, 0.53, 0.86
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